Логарифмдерді шешудің 3 әдісі

Мазмұны:

Логарифмдерді шешудің 3 әдісі
Логарифмдерді шешудің 3 әдісі

Бейне: Логарифмдерді шешудің 3 әдісі

Бейне: Логарифмдерді шешудің 3 әдісі
Бейне: Баланы ашуланбай қалай тәрбиелеуге болады? | Бала тәрбиесі 2024, Қараша
Anonim

Логарифмдерді шешу қиын болып көрінуі мүмкін, бірақ логарифм есептерін шешу сіз ойлағаннан әлдеқайда қарапайым, себебі логарифмдер - экспоненциалдық теңдеулерді жазудың тағы бір әдісі. Логарифмді таныс формада қайта жазғаннан кейін, сіз оны кез келген басқа экспоненциалдық теңдеу сияқты шеше аласыз.

Қадам

Бастамас бұрын: логарифмдік теңдеулерді экспоненциалды түрде шығаруды үйреніңіз

Логарифмдерді шешу 1 -қадам
Логарифмдерді шешу 1 -қадам

Қадам 1. Логарифмнің анықтамасын түсіну

Логарифмдік теңдеулерді шешпес бұрын, логарифмдердің экспоненциалды теңдеулерді жазудың басқа әдісі екенін түсіну қажет. Нақты анықтама келесідей:

  • y = журналб (x)

    Егер және тек егер: бж = x

  • Есіңізде болсын, b - логарифмнің негізі. Бұл мән келесі шарттарға сәйкес келуі керек:

    • b> 0
    • b 1 -ге тең емес
  • Теңдеуде у - көрсеткіш, ал х - логарифмде ізделінетін көрсеткішті есептеу нәтижесі.
Логарифмдерді шешу 2 -қадам
Логарифмдерді шешу 2 -қадам

Қадам 2. Логарифмдік теңдеуді қарастырайық

Есептің теңдеуін қараған кезде, негізін (b), дәрежесін (у) және экспоненциалды (х) іздеңіз.

  • Мысал:

    5 = журнал4(1024)

    • b = 4
    • y = 5
    • x = 1024
Логарифмдерді шешіңіз 3 -қадам
Логарифмдерді шешіңіз 3 -қадам

Қадам 3. Көрсеткішті теңдеудің бір жағына жылжытыңыз

X көрсеткішінің мәнін теңдік белгісінің бір жағына жылжытыңыз.

  • Мысалға:

    1024 = ?

Логарифмдерді шешіңіз 4 -қадам
Логарифмдерді шешіңіз 4 -қадам

Қадам 4. Экспонент мәнін оның негізіне енгізіңіз

Негізгі мән b, y экспонентімен көрсетілген мәндердің санына көбейтілуі керек.

  • Мысал:

    4 * 4 * 4 * 4 * 4 = ?

    Бұл теңдеуді былай жазуға болады: 45

Логарифмдерді шешіңіз 5 -қадам
Логарифмдерді шешіңіз 5 -қадам

Қадам 5. Соңғы жауабыңызды қайта жазыңыз

Енді сіз логарифмдік теңдеуді экспоненциалдық теңдеу ретінде қайта жаза білуіңіз керек. Теңдеудің екі жағының да мәні бірдей екеніне көз жеткізу үшін жауабыңызды қайталап тексеріңіз.

  • Мысал:

    45 = 1024

3 әдіс 1: Х мәнін табу

Логарифмдерді шешіңіз 6 -қадам
Логарифмдерді шешіңіз 6 -қадам

Қадам 1. Логарифмдік теңдеуді бөліңіз

Теңдеудің логарифмдік теңдеу болып табылмайтын бөлігін екінші жағына жылжыту үшін кері есептеуді орындаңыз.

  • Мысал:

    журнал3(x + 5) + 6 = 10

    • журнал3(x + 5) + 6 - 6 = 10 - 6
    • журнал3(x + 5) = 4
Логарифмдерді шешіңіз 7 -қадам
Логарифмдерді шешіңіз 7 -қадам

2 -қадам. Бұл теңдеуді экспоненциалды түрде қайта жазыңыз

Логарифмдік теңдеулер мен көрсеткіштік теңдеулер арасындағы байланыс туралы білетіндеріңізді қолданыңыз және оларды қарапайым және шешуге оңай болатын экспоненциалды түрде қайта жазыңыз.

  • Мысал:

    журнал3(x + 5) = 4

    • Бұл теңдеуді [анықтамасымен салыстырыңыз. y = журналб (x)], онда сіз мынаны қорытындылай аласыз: y = 4; b = 3; x = x + 5
    • Теңдеуді келесі түрде қайта жазыңыз: bж = x
    • 34 = x + 5
Логарифмдерді шешіңіз 8 -қадам
Логарифмдерді шешіңіз 8 -қадам

3 -қадам. X мәнін табыңыз

Бұл есеп негізгі көрсеткіштік теңдеуге дейін жеңілдетілген соң, сіз оны кез келген басқа көрсеткіштік теңдеу сияқты шеше алуыңыз керек.

  • Мысал:

    34 = x + 5

    • 3 * 3 * 3 * 3 = x + 5
    • 81 = x + 5
    • 81 - 5 = x + 5 - 5
    • 76 = x
Логарифмдерді шешіңіз 9 -қадам
Логарифмдерді шешіңіз 9 -қадам

Қадам 4. Соңғы жауабыңызды жазыңыз

X мәнін тапқан кезде алатын соңғы жауап - логарифмнің бастапқы мәселесіне жауап.

  • Мысал:

    x = 76

3 -тің 2 әдісі: Логарифмдік қосу ережесін қолдану арқылы X мәнін табу

Логарифмдерді шешіңіз 10 -қадам
Логарифмдерді шешіңіз 10 -қадам

Қадам 1. Логарифмдерді қосу ережелерін түсіну

«Логарифмдік қосу ережесі» деп аталатын логарифмдердің бірінші қасиеті көбейтіндінің логарифмі екі мәннің логарифмдерінің қосындысына тең екенін айтады. Бұл ережені теңдеу түрінде жазыңыз:

  • журналб(m * n) = журналб(м) + журналб(n)
  • Есіңізде болсын, келесілер қолданылуы керек:

    • m> 0
    • n> 0
Логарифмдерді шешіңіз 11 -қадам
Логарифмдерді шешіңіз 11 -қадам

Қадам 2. Логарифмді теңдеудің бір жағына бөліңіз

Теңдеудің бөліктерін жылжыту үшін кері есептеулерді қолданып, логарифмдік теңдеудің бір жағында, ал басқа компоненттер екінші жағында болады.

  • Мысал:

    журнал4(x + 6) = 2 - журнал4(x)

    • журнал4(x + 6) + журнал4(x) = 2 - журнал4(x) + журнал4(x)
    • журнал4(x + 6) + журнал4(x) = 2
Логарифмдерді шешіңіз 12 -қадам
Логарифмдерді шешіңіз 12 -қадам

Қадам 3. Логарифмдік қосу ережесін қолданыңыз

Егер теңдеуде қосылатын екі логарифм болса, оларды біріктіру үшін логарифм ережесін қолдануға болады.

  • Мысал:

    журнал4(x + 6) + журнал4(x) = 2

    • журнал4[(x + 6) * x] = 2
    • журнал4(x2 + 6x) = 2
Логарифмдерді шешіңіз 13 -қадам
Логарифмдерді шешіңіз 13 -қадам

4 -қадам. Бұл теңдеуді экспоненциалды түрде қайта жазыңыз

Есіңізде болсын, логарифмдер - экспоненциалды теңдеулерді жазудың тағы бір әдісі. Теңдеуді шешуге болатын түрге қайта жазу үшін логарифмдік анықтаманы қолданыңыз.

  • Мысал:

    журнал4(x2 + 6x) = 2

    • Бұл теңдеуді [анықтамасымен салыстырыңыз. y = журналб (x)], мынандай қорытынды жасауға болады: y = 2; b = 4; x = x2 + 6x
    • Бұл теңдеуді келесі түрде қайта жазыңыз: bж = x
    • 42 = x2 + 6x
Логарифмдерді шешіңіз 14 -қадам
Логарифмдерді шешіңіз 14 -қадам

5 -қадам. X мәнін табыңыз

Бұл теңдеу кәдімгі экспоненциалдық теңдеуге айналған соң, экспоненциалды теңдеулер туралы білетіндеріңізді қолданып, x мәнін табыңыз.

  • Мысал:

    42 = x2 + 6x

    • 4 * 4 = x2 + 6x
    • 16 = х2 + 6x
    • 16 - 16 = х2 + 6x - 16
    • 0 = x2 + 6x - 16
    • 0 = (x - 2) * (x + 8)
    • x = 2; x = -8
Логарифмдерді шешіңіз 15 -қадам
Логарифмдерді шешіңіз 15 -қадам

Қадам 6. Жауаптарыңызды жазыңыз

Бұл жағдайда сізде теңдеудің жауабы болуы керек. Жауапты берілген бос орынға жазыңыз.

  • Мысал:

    x = 2

  • Назар аударыңыз, логарифмге теріс жауап бере алмайсыз, сондықтан сіз жауаптан құтыла аласыз x - 8.

3 -ші әдіс 3: Логарифмдік бөлу ережесін қолдана отырып, X мәнін табу

Логарифмдерді шешіңіз 16 -қадам
Логарифмдерді шешіңіз 16 -қадам

Қадам 1. Логарифмдік бөлу ережесін түсіну

«Логарифмдік бөлу ережесі» деп аталатын логарифмдердің екінші қасиетіне сүйене отырып, бөлгіштің логарифмін бөлгіштен логарифмді алып тастау арқылы қайта жазуға болады. Бұл теңдеуді келесі түрде жазыңыз:

  • журналб(м/н) = журналб(м) - журналб(n)
  • Есіңізде болсын, келесілер қолданылуы керек:

    • m> 0
    • n> 0
Логарифмдерді шешіңіз 17 -қадам
Логарифмдерді шешіңіз 17 -қадам

Қадам 2. Логарифмдік теңдеуді бір жағына бөл

Логарифмдік теңдеулерді шешпес бұрын барлық логарифмдік теңдеулерді теңдік белгісінің бір жағына көшіру керек. Теңдеудің екінші жартысын екінші жағына жылжыту керек. Оны шешу үшін кері есептеулерді қолданыңыз.

  • Мысал:

    журнал3(x + 6) = 2 + журнал3(x - 2)

    • журнал3(x + 6) - журнал3(x - 2) = 2 + журнал3(x - 2) - журнал3(x - 2)
    • журнал3(x + 6) - журнал3(x - 2) = 2
Логарифмдерді шешіңіз 18 -қадам
Логарифмдерді шешіңіз 18 -қадам

Қадам 3. Логарифмдік бөлу ережесін қолданыңыз

Егер теңдеуде екі логарифм болса және олардың біреуін екіншісінен алып тастау қажет болса, сіз осы екі логарифмді біріктіру үшін бөлу ережесін қолдана аласыз және қолдануыңыз керек.

  • Мысал:

    журнал3(x + 6) - журнал3(x - 2) = 2

    журнал3[(x + 6) / (x - 2)] = 2

Логарифмдерді шешіңіз 19 -қадам
Логарифмдерді шешіңіз 19 -қадам

Қадам 4. Бұл теңдеуді экспоненциалды түрде жаз

Бір ғана логарифмдік теңдеу қалғаннан кейін логарифмдік анықтаманы пайдаланып, журналды жойып, экспоненциалды түрде жазыңыз.

  • Мысал:

    журнал3[(x + 6) / (x - 2)] = 2

    • Бұл теңдеуді [анықтамасымен салыстырыңыз. y = журналб (x)], мынандай қорытынды жасауға болады: y = 2; b = 3; x = (x + 6) / (x - 2)
    • Теңдеуді келесі түрде қайта жазыңыз: bж = x
    • 32 = (x + 6) / (x - 2)
Логарифмдерді шешіңіз 20 -қадам
Логарифмдерді шешіңіз 20 -қадам

5 -қадам. X мәнін табыңыз

Теңдеу экспоненциалды болғаннан кейін, сіз х мәнін әдеттегідей таба аласыз.

  • Мысал:

    32 = (x + 6) / (x - 2)

    • 3 * 3 = (x + 6) / (x - 2)
    • 9 = (x + 6) / (x - 2)
    • 9 * (x - 2) = [(x + 6) / (x - 2)] * (x - 2)
    • 9x - 18 = x + 6
    • 9x - x - 18 + 18 = x - x + 6 + 18
    • 8x = 24
    • 8х / 8 = 24/8
    • x = 3
Логарифмдерді шешіңіз 21 -қадам
Логарифмдерді шешіңіз 21 -қадам

Қадам 6. Соңғы жауабыңызды жазыңыз

Зерттеу жүргізіңіз және есептеу қадамдарын екі рет тексеріңіз. Жауаптың дұрыстығына сенімді болсаңыз, оны жазыңыз.

  • Мысал:

    x = 3

Ұсынылған: